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Abstract—We present an approach to recognition of Croatian
traffic signs based on convolutional neural networks (CNNs). A
library for quick prototyping of CNNs, with an educational scope,
is first developed'. An architecture similar to LeNet-5 is then
created and tested on the MNIST dataset of handwritten digits
where comparable results were obtained. We analyze the FER-
MASTIF TS2010 dataset and propose a CNN architecture for
traffic sign recognition. The presented experiments confirm the
feasibility of CNNs for the defined task and suggest improvements
to be made in order to improve recognition of Croatian traffic
signs.

I. INTRODUCTION

Traffic sign recognition is an example of the multiple
classes recognition problem. Classical approaches to this prob-
lem in computer vision typically use the following well-
known pipeline: (1) local feature extraction (e.g. SIFT), (2)
feature coding and aggregation (e.g. BOW) and (3) learning a
classifier to recognize the visual categories using the chosen
representation (e.g. SVM). The downsides of these approaches
include the suboptimality of the chosen features and the need
for hand-designing them.

CNNSs approach this problem by learning meaningful repre-
sentations directly from the data, so the learned representations
are optimal for the specific classification problem, thus elim-
inating the need for hand-designed image features. A CNN
architecture called LeNet-5 [1] was successfully trained for
handwritten digits recognition and tested on the MNIST dataset
[2] yielding state-of-art results at the time. An improved and
larger CNN was later developed [3] and current state-of-the-art
results on the GTSRB dataset [4] were obtained.

Following the results by [3], we were motivated to evaluate
a similar architecture on the Croatian traffic signs dataset FER-
MASTIF TS2010 [5]. To do so, we first developed a library
that would allow us to test different architectures easily. After
different subsets were tested for successful convergence, an
architecture similar to LeNet-5 was built and tested on the
MNIST dataset, yielding satisfactory results. Following the
successful reproduction of a handwritten digit classifier (an
error rate between 1.7% and 0.8%, where LeNet-X architec-
tures yield their results), we started testing architectures for a
subset of classes of the FER-MASTIF TS2010 dataset.

In the first part of this article, CNNs are introduced and
their specifics, compared to classical neural networks, are pre-
sented. Ways and tricks for training them are briefly explained.

! Available at https://github.com/v-v/CNN/

In the second part the datasets are described and the choice
of a subset of classes for the FER-MASTIF TS2010 dataset is
elaborated. In the last part of the paper, the experimental setup
is explained and the results are discussed. Finally, common
problems are shown and suggestions for future improvements
are given.

II. ARCHITECTURAL SPECIFICS OF CNNS

Convolutional neural networks represent a specialization of
generic neural networks, where the individual neurons form a
mathematical approximation of the biological visual receptive
field [6]. Visual receptive fields correspond to small regions of
the input that are processed by the same unit. The receptive
fields of the neighboring neurons overlap, allowing thus robust-
ness of the learned representation to small translations of the
input. Each receptive field learns to react to a specific feature
(automatically learned as a kernel). By combining many layers,
the network forms a classifier that is able to automatically learn
relevant features and is less prone to translational variance
in data. In this section, the specific layers (convolutional and
pooling layers) of CNNs will be explained. A CNN is finally
built by combining many convolutional and pooling layers,
so the number of output in each successive layer grows,
while size of images on the output is reducing. The output
of the last CNN layer is a vector image representation. This
image representation is then classified using a classical fully-
connected MLP [3], or another classifier, e.g. an RBF network
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Fig. 1: Illustration of the typical architecture and the different
layers used in CNNs. Many convolutional and pooling layers
are stacked. The final layers consist of a fully connected
network.
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A. Feature maps

Fig. 2 shows a typical neuron (a) and a feature map (b).
Neurons typically output a scalar, while feature maps represent



the two-dimensional output of an operation performed by
a CNN unit. Typical operations performed in a CNN are
convolutions and pooling operations. The former learns a
feature (convolution kernel), while the latter only reduces
the dimensionality by aggregation. These operations will be
discussed in the following subsections.

Fig. 2: CNN elements: a) a classical neuron and its connectivity
b) a feature map in a convolutional operation (the two output
pixels are computed with the same kernels)

B. Convolution

Convolutional layers compute feature maps by convolving
the previous layer with a specific kernel. Let M be a feature
map of layer [ and M'~! a feature map of the previous layer.
The width and height of a feature map is indicated with M,
and Mj, while the width and hight of kernels are indicated
with K, and Kj,. Let S,, and S}, represent the horizontal and
vertical steps of the kernel during a convolution operation. The
sizes of the output feature maps (of the current layer) are then
dependent on the sizes of feature maps from the previous layer,
kernels and stepping factors. The output width and height are
given by Eq (1) and Eq. (2), correspondingly.
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Fig. 3: Illustrated convolution a) first step b) next step, after
moving the receptive field for .S,, locations

After each convolution, a bias is added to each element and
the result is passed through an activation function (see II-D).

Convolutional layers can either have full connectivity or
sparse connectivity. In case of full connectivity, each feature
map of the current layer is connected with every feature map
from the previous layer. Each connection is represented by a
kernel, so a convolutional layer that is fully connected will
have |M!| - |[M'~!| kernels. Fully connected convolutional
layers are used by most authors, e.g. [7] and [3].

Sparse connectivity is a way of connecting feature maps
in convolution operations where each feature map from the

current layer is connected only to a specific subset of feature
maps from the previous layer. The benefits of this approach are
reduced computational complexity and improved generaliza-
tion, as the network is forced to learn different features. When
using fully connected convolutional layers there is a chance
that the network will learn a less diverse set of features [1],

[8].

Fig. 4: An example of sparse connectivity of a convolutional
layer. Each feature map is connected to only a subset of feature
maps from the previous layer

C. Pooling

Pooling layers reduce dimensionality of feature maps from
the previous layer by aggregating and representing the grouped
features by one feature. An illustration of a generic pooling
operation is shown in Fig. 5 b) where the features of the
previous layer are grouped in 2 X 2 areas and are represented
in the current map with one element. There are many different
pooling operations but the most common ones are mean-
pooling and max-pooling. The former represents the group
with the average value of all the features withing the group,
while the latter represents the group with the maximum ele-
ment found within the group. Mean pooling was used in earlier
works [1], but in recent works max pooling is mostly used, as
it always outperforms mean pooling [9] and is additionally
faster than mean pooling.

There are a few modern parametric pooling operations that
can outperform max-pooling in terms of the quality of rep-
resentation [10], [11]. However they are more computational
expensive, require fine-tuning of additional hyper-parameters
and were thus not used in this work.

D. Activation functions

An activation function is a sigmoid-shaped function that
maps an input to its output, constrained to a defined range.
Just as in classical multilayer perceptrons, they are also used
in convolutional neural networks where they are applied to
each element of a feature map. To be able to use the error
backpropagation algorithm for training of CNN the activation
function should be derivable. The two most commonly used
activation functions [8], [12] are the logistic function, defined
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Fig. 5: a) Weight sharing in convolutional layers, the same
kernel is used for all the elements within a feature map b) a
generic pooling operation

in Eq. (3) and a scaled tanh sigmoidal function, defined in Eq.
“

2
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Weights and kernel elements are randomly initialized by
using a uniform distribution [13]. However, the sampling
interval depends on the choice of the activation function. For
the logistic function, the interval is given in (5), while for the
scaled tanh sigmoidal function the interval is given in (6). In
those equations n;,, indicates the number of neurons (or feature
map elements) in the previous layer, while n,,; indicates the
number of neurons (or feature map elements) in the current
layer. Improper initialization may lead to poor convergence of

the network.
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III. TRAINING CNNS

In supervised training, convolutional neural networks are
typically trained by the Backpropagation algorithm. The algo-
rithm is the same as for multilayer perceptrons but is extended
for convolutional and pooling operations.

A. Backpropagation for convolutional layers

For convolutional layers, the backpropagation algorithm is
the same as for multilayer perceptrons (if every element of
a feature map is treated as a neuron and every element of
a kernel is treated as a weight) with the only exception that
weights are shared inside a feature map. Fig. 5 a) illustrates
weight sharing in a convolution between two feature maps.
The weight sharing easily fits into backpropagation algorithm:
because multiple elements of the feature map contribute to the
error, the gradients from all these elements contribute to the
same set of weights.

B. Backpropagation for pooling layers

Pooling layers require a way to reverse the pooling oper-
ation and backpropagate the errors from the current feature
map to the previous one. For the case of max-pooling, the
error propagates to the location where the maximal feature
is located while the other locations receives an error of zero.
For mean-pooling, the error is equally distributed within the
locations that were grouped together in the forward pass and
can be expressed as E' = E ® 1, where E’ is the error of the
previous layer, E the error of the current layer and ® represents
the Kronecker product.

IV. IMPROVING LEARNING
A. Backpropagation with momentum

The classical Backpropagation algorithm uses a global
learning rate 1 to scale the weight updates. This modified
version scales the learning rate dynamically depending on the
partial derivative in the previous update. The method is defined
in the Eq. (7), where « represents the amortization factor
(typical values between 0.9 and 0.99).

Aw(t) = aAw(t — 1) — ng—i(t) @)

B. Adding random transformations

Generalization can be improved by increasing the number
of training samples. However that usually requires additional
human effort for collection and labelling. Adding random
transformations can increase the generalization capability of
a classifier without additional effort. There are two main ways
for deploying random transformations into a system: (1) by
integrating them into the network, after the input layers [3]
or (2) by generating additional samples and adding them to
the training set [14]. In this work we opted for generating
additional samples since the code is currently not optimized
for speed, and adding an additional task to be performed for
each iteration would further slow the learning process.

C. Dropout

A typical approach in machine learning when improving
generalization consists of combining different architectures.
However, that can be computationally quite expensive. The
dropout method suggests randomly disabling some hidden
units during training, thus generating a large set of combined
virtual classifiers without the computational overhead [15].
For a simple multilayer perceptron with N neurons in one
hidden layer, 2%V virtual architectures would be generated when
applying dropout. Usually, half the units are disabled in each
learning iteration and that is exactly what we used in this work.

V. DATASETS

Two datasets were used in this work. The MNIST dataset of
handwritten digits [2] and the FER-MASTIF TS2010 dataset
of Croatian traffic signs [5] [16].



A. MNIST

The MNIST dataset consists of 10 classes (digits from 0
to 9) of 28 x 28 grayscale images. It is divided into a training
set of 60000 samples and a testing set of 10000 samples. The
dataset was unaltered except for preprocessing it to a mean of
zero and unit variance.
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Fig. 6: Samples from the MNIST dataset

B. FER-MASTIF TS2010

This dataset consists of 3889 images of 87 different traffic
signs and was collected with a vehicle mounted video camera
as a part of the MASTIF (Mapping and Assessing the State of
Traffic InFrastructure) project. In [17], images were selected
by the frame number and split in two different sets, a training
set and a test set. This method ensured that images of the same
traffic sign do not occur in both sets. The sizes varies from 15
pixels to 124 pixels. We opted for classes containing at least
20 samples of sizes greater or equal to 44 x 44. Fig. 8 shows
the nine classes that met that criteria.
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Fig. 7: Part of the histogram showing the number of samples
bigger or equal to 44 x 44 for two sets. The black line separates
the classes that we chose (more than 20 samples) for our
experiments.

Each sample was first padded with 2 pixels on each side
(thus expanding their size to 48 x48) to allow the convolutional
layers to relevant features close to the border. The selected
subset of samples was then expanded by applying random
transformations until 500 samples per class were obtained.

The random transformations applied are: (1) rotation sampled
from A(0,5°) and (2) translation of each border (that serves
the purpose of both scaling and translation), sampled from
N (0, 1pz). In the end, every sample was preprocessed so that

it has a mean of zero and unit variance.
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Fig. 8: The selected 9 classes of traffic signs.
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VI. EXPERIMENTS AND RESULTS

Different architectures were built and evaluated for each
dataset. In the following section the architectural specifics of
convolutional neural networks for each experiment are defined,
their performance is illustrated and results are discussed.

A. MNIST

The following architecture was built:

input layer - 1 feature map 32 x 32

first convolutional layer - 6 feature maps 28 x 28
first pooling layer - 6 feature maps 14 x 14

second convolutional layer - 16 feature maps 10 x 10
second pooling layer - 16 feature maps 5 X 5

third convolutional layer - 100 feature maps 1 x 1
hidden layer - 80 neurons

output layer - 10 neurons

The network was trained by stochastic gradient descent
with 10 epochs of 60000 iterations each. No dropout and no
random transformations were used. Such network yielded a
result of 98.67% precision on the MNIST test set. Table I
shows the obtained confusion matrix. The three most common
mistakes are as shown in Fig. 9. It can be noticed that samples
that were mistaken share a certain similarity with the wrongly
predicted class.

Predicted class
0 1 2 3 4 5 6 7 8 9
0| 973 0 1 0 0 0 3 1 2 0
1 0 | 1127 4 1 0 0 1 0 2 0
2 | 2 3 0 | 1020 0 0 0 0 4 5 0
=3 0 0 2| 992 0 6 0 3 5 2
= | 4 1 0 1 0 | 963 0 4 0 2 11
215 1 0 0 3 0 | 884 1 1 0 2
< |6 10 2 0 0 1 2 | 943 0 0 0
7 0 1 7 2 0 0 0 | 1014 1 3
8 2 0 1 0 1 1 1 3| 962 3
9 3 2 0 3 1 3 1 4 3 | 989

TABLE I: Confusion matrix for the MNIST dataset



Fig. 9: The three most common errors on the MNIST dataset:
a) number 4 classified as 9, b) number 6 classified as 0, c)
number 7 classified as 2

B. FER-MASTIF TS2010

The following architecture was built:

input layer - 3 feature maps 48 x 48

first convolutional layer - 10 feature maps 42 x 42
first pooling layer - 10 feature maps 21 x 21
second convolutional layer - 15 feature maps 18 x 18
second pooling layer - 15 feature maps 9 x 9

third convolutional layer - 20 feature maps 6 x 6
third pooling layer - 10 feature maps 3 x 3

fourth convolutional layer - 40 feature maps 1 x 1
hidden layer - 80 neurons

output layer - 9 neurons

The network was trained with 20 epochs of 54000 iterations
each by stochastic gradient descent. Random transformations
were used (as defined in Section V) while dropout was not
used. The trained network yielded a result of 98.22% on the
test set. Table II shows the full confusion matrix on the test
set and Fig. 10 shows the three most common errors made by
the network.

Predicted class

C02 | A04 | B32 | A33 | Cll B32 | AO05 B46 | A03

C02 100 0 0 0 0 0 0 0 0

A04 0 99 0 0 0 0 1 0 0

B32 0 0 97 3 0 0 0 0 0

§ A33 0 0 0 100 0 0 0 0 0
© | cl1 0 0 0 0 | 100 0 0 0 0
§ B31 0 0 0 0 0 100 0 0 0
g A05 0 0 0 0 0 0 98 0 2
B46 0 0 0 0 0 0 0 100 0

A03 0 3 0 0 0 0 7 0 90

TABLE II: Confusion matrix obtained on the FER-MASTIF
TS2010 dataset

SAMPLES

PREDICTED
CLASS

Fig. 10: The three most common errors on the FER-MASTIF
TS2010 dataset a) AO3 predicted as A0S, b) A03 predicted as
A04, c) B32 predicted as A33

C. FER-MASTIF TS2010 with smaller samples included

Fig. 11 shows the distribution of sample sizes (of the cho-
sen 9 classes) in the FER-MASTIF TS2010 set. To determine
the influence of sample size to the classification error, we
scaled all samples to the same size (44 x 44 with padding
leading to an input image of 48 x 48), matching the input
of the network. In the previous experiment, samples smaller
than 44 x 44 that were not used. However, in the following
experiment they were included in the test set by upscaling to
the required size.
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Fig. 11: Number of samples of different sizes (within the 9
chosen classes)

Fig. 12 shows the percentage of misclassified samples for
different sizes. It can be seen that samples bigger than 45 x 45
produce significantly lower error rates than smaller samples,
thus confirming our choice of the input dimensionality to the
CNN.
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Fig. 12: Dependency of the error rate on the sample size. (The
vertical line denotes the limit of 44px from where samples for
the experiments in subsections A and B were taken.)

D. FER-MASTIF TS2010 with dropout

The same architecture was trained again with dropout in
the final layers. We used the previously defined 9 classes
and, again, only samples larger than 44 x 44. Using dropout
improved the network generalization capability that yielded a
result of 99.33% precision.

E. Comparison of learned kernels

Fig. 13 shows a few learned convolutional kernels from
the first and second convolutional layers on the two different
datasets. It is clearly visible that the network adapted to the
dataset and learned different distinct features for each dataset.

VII. COMMON PROBLEMS IN TRAINING CNNs

CNNss are difficult to train because they have many hyper-
parameters and learning procedure parameters, which need
to be set correctly in order for learning to converge. In this
section, we discuss a few issues that we had during the
development of our library and the two networks.
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Fig. 13: Examples of learned kernels: a) first convolutional
layer on MNIST b) first convolutional layer on FER-MASTIF
TS2010 c) second convolutional layer on MNIST d) second
convolutional layer on FER-MASTIF TS2010

Choosing architectural parameters like the number of
layers and sizes of kernels and feature maps within each layer
depend on the dataset. It makes sense to first choose the size
of feature maps and kernels in the first layer according to
the scale of the features in the dataset. Networks for dataset
containing features of larger scale (like the FER-MASTIF
TS2010 dataset) should use larger kernels and feature maps
than networks that aim at classifying dataset with features of
smaller scale (like the MNIST dataset). The same is valid for
every other layer.

The choice of an activation function and number of
neurons in each layer should match the intervals for random
initialization for the weights and convolutional kernels. Also,
it is suggested to preprocess the data to zero mean and unit
variance.

CNNs are typically more difficult to train than MLPs, so
when developing a new library it is recommended to check the
gradients and test for convergence in all CNN layers. Like
in classical NNs, whether a network will converge depends
strongly on the choice of the learning rate. It is suggested to
experiment with learning rates of different scales (e.g. 0.001,
0.01, 0.1, etc.) and to implement an adaptive algorithm that
decreases the learning rate over time.

To improve the generalization capabilities of a CNN, it
is suggested to use dropout or sparse connectivity between
layers (dropout is a preferred method in modern state-of-the-art
methods [3]) and including random transformations.

VIII. CONCLUSION AND FUTURE WORK

We developed a library that enabled us to easily prototype
and test different architectures of convolutional neural net-
works. After successfully testing the convergence of different
elements of the library, we built a network similar to LeNet-5
[1] and tested it on the MNIST dataset of handwritten digits
where we obtained comparable results.

In the second part of this work, we analyzed and prepared
the FER-MASTIF TS2010 dataset and built a convolutional
neural network for recognizing a subset of 9 classes. Although
limited to most numerous classes, the results were satisfactory.

Our library was developed having simplicity and clarity in
mind, for educational purposes. It was not optimized for speed.

Each training session lasted about a week. In case of building
a bigger classifier for more classes of the FER-MASTIF
TS2010 we suggest improving the speed of the convolutional
operations and implementing mini-batch learning.

Regarding the FER-MASTIF TS2010 dataset, we suggest
gathering more data. More data is suggested even for the 9
selected classes that had enough samples and yielded satis-
factory results when used with random transformations, but
especially for the remaining classes that didn’t have enough
samples to use (even when using random transformations to
generate more samples).
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