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ABSTRACT
Video hyperlinking represents a classical example of mul-
timodal problems. Common approaches to such problems
are early fusion of the initial modalities and crossmodal
translation from one modality to the other. Recently, deep
neural networks, especially deep autoencoders, have proven
promising both for crossmodal translation and for early fu-
sion via multimodal embedding. A particular architecture,
bidirectional symmetrical deep neural networks, have been
proven to yield improved multimodal embeddings over clas-
sical autoencoders, while also being able to perform cross-
modal translation. In this work we focus firstly at evaluat-
ing good single-modal continuous representations both for
textual and for visual information. Word2Vec and para-
graph vectors are evaluated for representing collections of
words, such as parts of automatic transcripts and multiple
visual concepts, while different deep convolutional neural
networks are evaluated for directly embedding visual infor-
mation, avoiding the creation of visual concepts. Secondly,
we evaluate methods for multimodal fusion and crossmodal
translation, with different single-modal pairs, in the task of
video hyperlinking. Bidirectional (symmetrical) deep neural
networks were shown to successfully tackle downsides of mul-
timodal autoencoders and yield a superior multimodal rep-
resentation. In this work, we extensively tests them in dif-
ferent settings with different single-modal representations,
within the context of video hyperlinking. Our novel bidi-
rectional symmetrical deep neural networks are compared
to classical autoencoders and are shown to yield signifi-
cantly improved multimodal embeddings that significantly
(α = 0.0001) outperform multimodal embeddings obtained
by deep autoencoders with an absolute improvement in pre-
cision at 10 of 14.1 % when embedding visual concepts and
automatic transcripts and an absolute improvement of 4.3 %
when embedding automatic transcripts with features ob-
tained with very deep convolutional neural networks, yield-
ing 80 % of precision at 10.
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1. INTRODUCTION
The seminal idea of video hyperlinking is to create hyper-

links between different videos and/or video segments based
on their data. Each video consists of at least two data
streams: a visual stream and an audio stream. A visual
stream is represented by a set of consecutive images (frames)
of which the most meaningful ones are keyframes. Keyframes
(also known as intra-frames) are fully stored frames - frames
where the complete information is stored in the video stream.
Other frames (known as inter-frames) are expressed as a
change from neighbouring keyframes. This is due to the fact
that, in most videos, neighbouring frames contain a lot of
redundant information. Keyframes provide the whole frame
in the beginning, after the accumulated changes from the
original previous keyframe are too big and after every scene
change. These properties make keyframes a good source of
visual information from where visual concept extraction, vi-
sual embedding, action or event recognition and other visual
content analysis methods can be performed. Audio streams
also provide information - most often (but not limited to) as
speech and thus, after automatic transcription, a sequence
of words. Data from an audio source does not have to cor-
relate with data from the corresponding video source but
it certainly can. Given this nature of videos and/or video
segments, it is necessary to perform content analysis and
comparison of both visual information and spoken informa-
tion both in a crossmodal and in a multimodal fashion (e.g.
a link between two video segments can reflect a connection
between a concept being discussed in the first video segment
and a location being displayed in the second video segment).
State-of-the-art continuous representation spaces exists for
both visual and audio modalities, as well as for different lev-
els of embedding of each modality (e.g. visual embedding vs
semantic embedding and visual concept recognition). Con-
tinuous representations are also convenient for crossmodal
translation and multimodal fusion with recent deep learning
techniques.

Deep neural networks have been long known to produce



meaningful data representations [6], either as deep belief net-
works, autoencoders or as a combination of both. More
recently, deep neural networks have been successfully de-
ployed in tasks requiring consideration of multiple modali-
ties. These tasks vary from retrieval [3, 19, 11], ranking [22]
and classification tasks [2, 13] to generative tasks [19]. Data
often consist of bimodal pairs such as images and tags [2],
images and speech [3, 11], audio and video [13], but the sys-
tems exploiting them are not necessary bounded to those
pairs.

In all generality, methods for fusing modalities are often
required when working with multimodal data. The most
common approach consists in creating a joint multimodal
representation by embedding every single-modal representa-
tions into a common representation space. There are two
main groups of such approaches:

1. Multimodal approaches create a joint representation of
the initially disjoint modalities or otherwise merge the
initial modalities without necessarily providing a bidi-
rectional mapping of the initial representation spaces
to the new representation space and back. These ap-
proaches are typically used in retrieval and classifica-
tion tasks where translating back from the multimodal
representation to the single-modal ones is not required.

2. Crossmodal approaches focus on bidirectional mapping
of the initial representations [3], often by also creating
a joint representation space in the process of doing
so. They are able to map from one modality to an-
other and back, as well as representing them in a joint
representation space. These approaches can be used
where crossmodal translation is required (e.g., multi-
modal query expansion, crossmodal retrieval) in addi-
tion to multimodal fusion.

In this work, we analyze different methods for multimodal
embedding and crossmodal mapping, as well as different dif-
ferent single-modal representations to jointly embed descrip-
tors in a new multimedia representation for the task of video
hyperlinking. We focus on two source modalities: auto-
matic transcription of the audio track and video keyframes.
For automatic transcripts, we test different methods to ob-
tain good and meaningful representations. Regarding video
keyframes (visual information) we follow two different ap-
proaches: i) In the first approach, visual concepts extracted
at each keyframe are used, treated as words and then tested
with different methods to obtain representations in a con-
tinuous space. ii) The second approach utilizes state-of-the-
art convolutional neural networks to provide high-quality
representations directly from the image [17], without using
intermediate interpretable (by a human observer) concepts.

After determining good single-modal representations for
the task of video hyperlinking, we progress to analyzing dif-
ferent methods for obtaining multimodal embeddings while
also allowing for crossmodal translation. Classical autoen-
coders and bidirectional symmetrical deep neural networks
are evaluated and compared. The focus is put on combining
representations obtained from automatic transcripts with
embeddings obtained with deep convolutional neural net-
works with bidirectional symmetrical deep neural networks,
which have been shown to outperform classical autoencoders
in a multimodal setup with automatic transcripts and visual
concepts [21].

The seminal idea of bidirectional symmetrical deep neu-
ral networks is to keep separate deep neural networks for
each cross-modal translation while tying the weights of the
middle layers between the neural networks so as to yield
a common multimodal representation. In this setting, the
common middle layer acts as a multimodal representation
space that is attainable from either one of the modalities
and from which we can attain either one of the modalities.
This avoids common downsides present in classical autoen-
coders (see Sec. 2.2.2) and yields a improved multimodal
representation. We provide empirical proof of the superior-
ity of such embeddings in different setups, involving different
initial single-modal representations.

2. METHODOLOGY
In this section, we analyze methods for obtaining good

single modal representations and methods for embedding
multiple single modalities into improved multimodal repre-
sentation spaces. We start with different methods to repre-
sent automatic audio transcriptions of the video segments,
we progress to methods to represent keyframes of the video
segments and we conclude with different methods to cre-
ate joint multimodal representations, as well as allowing for
crossmodal translation. Where appropriate, for some single-
modal cases, methods for aggregating multiple embeddings
into a single single-modal representation are also tackled.

2.1 Initial Single-modal Representations
All methods presented in this work utilize two data modal-

ities: i) automatic audio transcripts and ii) video keyframes.
Automatic audio transcripts are used instead of subtitles
which are not always available in practice and would in-
clude a human component in the system. Video keyframes
are considered in two different settings: using ImageNet con-
cepts [15] or directly describing images with features ob-
tained with state-of-the-art convolutional neural networks.

2.1.1 Representing Automatic Transcripts
Automatic transcripts of a video segment consist of one or

more sentences, each with multiple words. This makes sen-
tence/paragraph/document representation methods suitable
for the task. Two methods were evaluated (each in differ-
ent settings): paragraph vectors [10] and Word2Vec [12].
Contrary to paragraph vectors, Word2Vec is not specifically
designed for embedding bigger blocks of text. However it
was shown that Word2Vec can perform quite well [1] and
can be suitable when combined with an aggregation of the
embedded words.

2.1.2 Representing Visual Information with Concepts
For each keyframe of each video segment, a set of top scor-

ing visual concepts is used as information indicating what’s
visible in the image. Visual concepts describe a class of
objects or entities: e.g., “n02121808” indicates “Any domes-
ticated member of the genus Felis (Domestic cat, house cat,
Felis domesticus, Felis catus)” and includes all related sub-
categories. We treat each visual concept as a word and uti-
lize it to obtain word embeddings (with Word2Vec or para-
graph vectors) representing the visual information of a video
segment provided by its visual concepts in a continous rep-
resentation space.
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Figure 1: Simplified comparison of the CNN architectures used in this work: AlexNet (top), VGG-16 (middle)
and VGG-19 (bottom). For simplicity, only the main layers are shown. Merging, reshaping, padding and
other layers are not illustrated.

2.1.3 Representing Visual Information with CNN Fea-
tures

Convolutional Neural Networks (CNNs) provide state-of-
the art visual descriptors [17] that have been shown to per-
form well both in computer vision applications [8, 23] and
in video summarization tasks [7]. In this work, we test three
different state-of-the art deep convolutional neural network
architectures, namely AlexNet, VGG-16 and VGG-19. Fig-
ure 1 illustrates, in a simplified manner (only main layers
are shown: convolutional, pooling and fully connected lay-
ers), the architectures of such networks. AlexNet [9] is deep
convolutional neural network of medium depth, with 3 con-
volutional layers, 3 max-pooling layers and a set of fully
connected layers at the end. VGG networks [18] are very
deep convolutional neural network architectures defined by
the Visual Geometry Group. We use two VGG architectures,
namely VGG-16 and VGG-19, with 16 and 19 “weight lay-
ers” respectively. The VGG-16 architecture consists of 13
convolutional layers, 5 max-pooling layers and 3 fully con-
nected layers. The VGG-19 architecture consists of 16 con-
volutional layers, 3 max-pooling layers and 3 fully connected
layers.

2.1.4 Aggregation
Depending on the subtask and the method used, the re-

sulting representations might require aggregation, e.g., to
represent all the automatic transcripts of a video segment
with Word2Vec or to represent all the keyframes of a video
segment. Some methods, on the other side, do not require
additional aggregation (e.g., paragraph vectors). In this
work, we tested two means of aggregating descriptors: sim-
ple averaging and Fisher vectors.

2.2 Multimodal and Crossmodal Approaches
In this section, we analyze methods for creating multi-

modal embeddings and allowing for crossmodal translation.
We compare classical autoencoders and bidirectional sym-
metrical deep neural networks, where both can do cross-
modal translation and provide a joint multimodal embed-
ding. Autoencoders are one of the most commonly used
methods for obtaining multimodal representations. Single-
modal autoencoders often include forced symmetry and are
used for dimensionality reduction. Bidirectional symmet-
rical DNNs are based on the idea of learning crossmodal
mappings in both directions while applying restrictions to
force symmetry in deep neural networks in order to form

a common multimodal embedding space that is common to
the two crossmodal mappings.

2.2.1 Simple Methods for Combining Multiple Modal-
ities

A simple way to perform multimodal early fusion is by
simply concatenating single-modal representations. This do-
es not provide the best results, as each representation still
belongs to its own representation space. It is also possible to
utilize two separate modalities by performing a linear com-
bination [5] of the similarities obtained by comparing each of
the two modalities. This late fusion avoids multimodal mod-
els and might offer slightly better results than simple con-
catenation (a linear combination can slightly correct the dif-
ferences by giving more importance to one modality and im-
plicitly reranking similarity scores by different modalities).
However, a linear combination requires cross-validation of
the parameters, which often might be dependent on the spe-
cific dataset and the single modal representations used. We
use these two methods as a baseline to compare standard au-
toencoders and bidirectional deep neural networks against.

2.2.2 Multimodal/Crossmodal Autoencoders
When using autoencoders for multimodal embedding, a

classical approach is to concatenate the modalities at the
inputs and outputs of a network [13, 11]. This approach,
however, does not offer crossmodal translation. A better
approach is to have autoencoders with separate inputs and
separate outputs for each modality, often with additional
separate fully connected layers attached to each input and
output layer, as illustrated in Figure 2. One common hid-
den layer is used for creating a joint multimodal representa-
tion. Sometimes, one modality is sporadically removed from
the input to make the autoencoder learn to represent both
modalities from one. The activations of the hidden layer
are used as a multimodal joint representation. This enables
autoencoders to also provide crossmodal mapping [13] in ad-
dition to a joint representation.

Autoencoders however have some downsides which slightly
deteriorate performance:

– Both modalities influence the same central layer(s),
either directly or indirectly, through other modality-
specific fully connected layers. Even when translating
from one modality to the other, the input modality is
either mixed with the other or with a zeroed input.
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Figure 2: Illustration of the architectures of a clas-
sical multimodal autoencoder (top) and a bidirec-
tional symmetrical deep neural network (bottom)

– Autoencoders need to learn to reconstruct the same
output both when one modality is marked missing
(e.g., zeroed) and when both modalities are presented
as input.

– Classical autoencoders are primarily made for multi-
modal embedding while crossmodal translation is of-
fered as a secondary function.

These issues are addressed by bidirectional (symmetrical)
deep neural networks [21], which we discuss next.

2.2.3 Bidirectional Deep Neural Networks
In bidirectional deep neural networks, learning is per-

formed in both directions: one modality is presented as an
input and the other as the expected output while at the
same time the second one is presented as input and the first
one as expected output. This is equivalent to using two sep-
arate deep neural networks and tying them (sharing specific
weight variables) to make them symmetrical, as illustrated
in bottom of Figure 2. Implementation-wise the variables
representing the weights are shared across the two networks
and are in fact the same variables. Learning of the two cross-
modal mappings is then performed simultaneously and they

are forced to be as close as possible to each other’s inverses
by the symmetric architecture in the middle. A joint repre-
sentation in the middle of the two crossmodal mappings is
also formed while learning.

Formally, let h
(j)
i denote (the activation of) a hidden layer

at depth j in network i (i = 1, 2; one for each modality),
xmi the feature vector for modality i and oi the output of

the network for modality i. In turn, for each network, W
(j)
i

denotes the weight matrix of layer j and b
(j)
i the bias vector.

Finally, we assume that each layer admits f as an activation
function. The architecture is then defined by:

h
(1)
1 = f(W

(1)
1 × xm1 + b

(1)
1 )

h
(1)
2 = f(W

(1)
2 × xm2 + b

(1)
2 )

h
(2)
1 = f(W(2) × h

(1)
1 + b

(2)
1 )

h
(2)
2 = f(W(3)T × h

(1)
2 + b

(2)
2 )

h
(3)
1 = f(W(3) × h

(2)
1 + b

(3)
1 )

h
(3)
2 = f(W(2)T × h

(2)
2 + b

(3)
2 )

o1 = f(W
(4)
1 × h

(3)
1 + b

(4)
1 )

o2 = f(W
(4)
2 × h

(3)
2 + b

(4)
2 )

It is important to note that in the above equations, the
weight matrices W(3) and W(2) are used twice due to weight

tying, for computing h
(2)
1 , h

(3)
2 and h

(2)
2 , h

(3)
1 respectively.

Training is performed by applying gradient descent to min-
imize the mean squared error of (o1,xm2) and (o2,xm1)
thus effectively minimizing the reconstruction error in both
directions and creating a joint representation in the middle,
where both representations are projected.

Given such an architecture, crossmodal translation is done
straightforwardly by presenting the first modality as xmi

and obtaining the output in the representation space of the
second modality as oi. A multimodal embedding is obtained
by presenting one or both modalities (xm1 and/or xm2) at
their respective inputs and reading the central hidden layers

h
(2)
1 and/or h

(2)
1 .

Multimodal embeddings are obtained in the following man-
ner:

– When the two modalities are available (automatic tran-
scripts and visual concepts or CNN features, depend-
ing on the setup), both are presented at their respec-
tive inputs and the activations are propagated through
the network. The multimodal embedding is then ob-
tained by concatenating the outputs of the middle layer.

– When one modality is available and the other is not
(either only transcripts or only visual information),
the available modality is presented to its respective in-
put of the network and the activations are propagated.
The central layer is then used to generate an embed-
ding by being duplicated, thus still generating an em-
bedding of the same size while allowing to transpar-
ently compare video segments regardless of modality
availability (either with only one or both modalities).

Finally, segments are then compared as illustrated in Fig-
ure 3: for each video segment, the two modalities are taken
(embedded automatic transcripts with either embedded vi-



Speech  keywords: conference, aid, in-
ternational, ships, agreed, rangoon, bur-
ma, diplomat, burmese, western, ...

Speech  keywords: airport, promised, 
ships, aid, gateways, transporting, delta, 
burmese, hub, reopened, ...

Visual concepts: bulletproof vest, sur-
geon, inhabitant, military, uniform, doc-
tor, nurse, turban, ...
or CNN representations

Visual concepts: buffet, dinner, dining 
table, shop room, ambulance, mercan-
tile, establishment, truck, ...
or CNN representations

Figure 3: Video hyperlinking with bidirectional
deep neural networks: two video segments, both
with two modalities (automatic transcripts and ei-
ther KU Leuven visual concepts or CNN features of
each keyframe) are compared after their multimodal
embeddings are computed

sual concepts or embedded CNN representations) and a mul-
timodal embedding is created with a bidirectional deep neu-
ral network. The two multimodal embeddings are then sim-
ply compared with a cosine distance to obtain a similarity
measure.

3. EXPERIMENTS
In this section, we first describe the dataset used for eval-

uation of the previously described methods. After that, we
proceed to evaluating the different methods described in Sec-
tion 2.1 for creating single-modal representation (both of
automatic transcripts and visual information). Finally, we
describe the details of the multimodal and crossmodal meth-
ods described in Section 2.2 and evaluate their performance
under different settings.

3.1 Dataset
The generation of hyperlinks within video segments is the

focus of the “Search and Hyperlinking” evaluation at Medi-
aEval and more recently at TRECVid [14]. All the methods
were evaluated within the task of video hyperlinking using
the MediaEval 2014 dataset and the respective groundtruth
that was collected as part of the challenge [16]. In this
task, there are two main concepts: anchors and targets.
Anchors represent segments of interest within videos that
a user would like to know more about. Targets represent
potential segments of interests that might or might not be
related with a specific anchor. The goal is to hyperlink
relevant targets for each anchor by using multimodal ap-
proaches. For each video, multiple data and modalities are
available. In this work, we used a combination of two modal-
ities: either automatic transcripts of the audio track and KU
Leuven [20] visual concepts or automatic transcripts of the
audio track and descriptors of each keyframe obtained with
different convolutional neural network architectures. Both
automatic transcripts and KU Leuven visual concepts are
provided as part of the dataset. KU Leuven visual concepts
consists of multiple ImageNet [15] classes detected in each
keyframe with a CNN architecture and provided as a textual
description together with each keyframe.

In practice, targets are not given and have to be defined
automatically before assessing their relevance to each of the
30 anchors provided. Evaluation of relevance is thus done
post-hoc on Amazon Mechanical Turk (AMT). In this pa-
per, we consider a set of targets made of the top-10 targets

that each participating team proposed for each anchor, along
with the relevance judgments from AMT.

In total, the dataset consists of 30 anchors, 10,809 targets
and a ground truth with 12,340 anchor-target pairs (either
related or unrelated). Interestingly, among the anchor and
target segments, not all have both transcripts and visual
concepts available. Regarding keyframes, there are in to-
tal 371,664 keyframes for an average of 34.3 keyframes per
video segment. The task consists of using multimodal infor-
mation to rank the targets by relevance for each anchor and
comparing their relevance with the previously established
groundtruth.

We implemented the autoencoder described in Section
2.2.2 in Keras1 and bidirectional symmetrical deep neural
networks, described in Section 2.2.3 in Lasagne2. The deep
convolutional neural networks are based on Keras-Convnets3,
a framework based on Keras offering models already pre-
trained on ImageNet. Our implementation of bidirectional
(symmetrical) deep neural networks is now available4 as an
open source command-line tool that can be used both in-
dependently and as a Python module. In both cases it can
be used to perform multimodal embedding and multimodal
query expansion (filling of missing modalities with cross-
modal translation) with a multitude of additional options.

3.2 Choice of Initial Representations
The performance of the different methods is shown in Ta-

ble 1. We chose to represent the transcripts and visual
concepts of each anchor and target with a Word2Vec skip-
gram model with hierarchical sampling [12], a representa-
tion size of 100 and a window size of 5. The visual concepts
were sorted previous to learning and the representations of
the words and concepts found within a segment were aver-
aged [1]. This option worked best for our task.

Convolutional neural network representations were obta-
ined by using the output of the last fully connected layers
of AlexNet, VGG-16 and VGG-19, respectively. All three
convolutional neural network architectures yield a represen-
tation of size 4096. Since there are multiple keyframes in
each video segment, aggregation was either done by averag-
ing or by using Fisher vectors. The average proved to be
stable and provide solid representations based on AlexNet,
as well as the best representations, based on VGG-16 and
VGG-19. For AlexNet, Fisher vectors provided slightly bet-
ter results (with a previous dimensionality reduction with
PCA to a size of 64 and GMM with 64 mixtures). Averaged
VGG-16 provide the best visual embedding, yielding a result
of 70.67 % in precision at 10. A standard cosine distance is
used in all the experiments as a measure of similarity.

3.3 Multimodal Embedding
Multimodal embeddings with both classical autoencoders

and bidirectional deep neural networks are tested. For a fair
comparison, the sizes of the layers and, concordly, the repre-
sentation dimensionality are the same for both architectures.
Initial, single-modal representations are of size 100 for auto-
matic transcripts and visual concepts. For representations
obtained with convolutional neural network, the size is 4096.

1http://keras.io
2https://github.com/Lasagne/Lasagne
3https://github.com/heuritech/convnets-keras
4https://github.com/v-v/BiDNN



Table 1: Single modal representations of automatic
transcripts and visual information

Representation Aggregation P@10 (%)

Automatic transcripts

Word2Vec average 58.67
Word2Vec Fisher 54.00
PV-DM - 45.00
PV-DBOW - 41.67

Visual information

KU Leuven c., W2V average 50.00
KU Leuven c., PV-DM - 45.33
KU Leuven c., PV-DBOW - 48.33
AlexNet average 63.00
AlexNet Fisher 65.00
VGG-16 average 70.67
VGG-16 Fisher 64.67
VGG-19 average 68.67
VGG-19 Fisher 66.00

In case of simple concatenation, the multimodal representa-
tion sizes are clearly of 200 and 4196, respectively.

Multimodal autoencoders and bidirectional deep neural
networks were configured to yield a representation of size
1000. Bigger representation sizes (up to 4196) did not im-
prove performance, while smaller representation sizes re-
sulted in deteriorated results. All systems were trained with
stochastic gradient descent (SGD) with Nesterov momen-
tum, dropout of 20 %, in mini-batches of 100 samples, for
1000 epochs (although convergence was achieved quite ear-
lier). Each system had its weights randomly initialized by
sampling from an appropriate uniform distribution [4] and
was run five times. The average scores (precision at 10) and
their respective standard deviations due to random initial-
ization are shown in Table 2 for all methods. Since there are
many different combinations of systems and initial modali-
ties, we report only the best performing initial, single modal
representations in combination with the different systems:
averaged transcripts, averaged visual concepts and averaged
representations obtained with deep convolutional neural net-
works (even in the case of VGG-16, where Fisher vectors
provided a better single-modal score, averaged VGG-16 fea-
tures performed better when embedded and it is the case we
report).

3.3.1 Simple Multimodal Approaches
For a fair and complete comparison, we test two simple

ways of combining multiple modalities: concatenation and
linear combination of similarity scores [5]. There is no sig-
nificant improvement when concatenating embedded tran-
scripts and visual concepts. However, a simple concatena-
tion of embedded transcripts and embeddings obtained with
convolutional neural networks improves over each single-
modal representation alone. For instance, combining VGG-
16 embeddings with embedded transcripts yields 75.33 %
(precision at 10) over the initial performance of 70.67 % and
58.67 % respectively. A linear combination of similarities,
on the other hand, does not offer a multimodal embedding
but might be simpler (often used for relevance reranking)
over simple concatenation, at the cost of having to optimize
the parameters on another dataset and at the cost of higher

variance.

3.3.2 Multimodal Embedding with Autoencoders
Multimodal autoencoders are the most common current

method for obtaining multimodal embeddings. We imple-
mented a model as illustrated in Figure 2 in the top part:
a multimodal autoencoder with separate inputs and out-
puts and separate fully connected layers assigned to each
input/output. The two modalities are then merged in a cen-
tral fully connected layer where the multimodal embedding
is obtained. Since autoencoders with separate modalities
perform better than simple autoencoders where the modali-
ties are concatenated and used as one input/output pair [21],
we didn’t test the classical simple version but only the better
performing one. This autoencoder architecture offers cross-
modal translation by being additionally trained with one
zeroed modality while asked to reconstruct both modalities.
We implemented the described autoencoder with a central
layer of size 1000. Bigger sizes did not improve the results
but smaller ones did deteriorate them. The inputs, out-
puts and their associated fully connected layers were sized
accordingly with the dimensionality of the input data.

Table 2 reports the results. It can be clearly seen that mul-
timodal embedding performs better than each single modal-
ity by itself; e.g. combining embedded transcripts and VGG-
19 features yields 74.73%, compared to 58.67% and 68.07%
respectively. However, in some cases, it seems that embed-
dings obtained in such a way do not yield significantly better
results than simple methods. We believe this to be caused
by the already good single representations and the fact that
autoencoders have to train to represent the correct output
with both modalities being present at their input and with
one zeroed modality. In cases where the initial embeddings
perform less (e.g., embedded visual concepts combined with
embedded transcripts), autoencoders seem to improve in a
more significant way.

3.3.3 BiDNN Multimodal Embedding
As explained in Section 2.2.3, bidirectional deep neural

networks try to address the problems found in classical mul-
timodal autoencoders. We implemented a bidirectional deep
neural network comparable with the previously described
autoencoder: a central fully connected layer yielding a repre-
sentation of size 1000 and inputs/outputs dependent on the
modalities used. Bidirectional deep neural networks behaved
similarly to autoencoders as representation sizes bigger than
1000 did not bring any significant improvement while smaller
ones deteriorated the performance. This confirms the choice
of the dimensionality of the new multimodal representation
by two independent methods. Each bidirectional deep neu-
ral network was trained with five independent runs of 1000
epochs each, although they converged earlier, the results
were averaged and, together with their respective standard
deviations, are reported in Table 2. Significance levels of
improvements are computed with single-tailed t-tests and
reported where appropriate.

Multimodal embedding with bidirectional deep neural net-
works creates a common joint representation space where
both modalities are projected from their initial representa-
tion spaces. This provides superior multimodal embeddings
that bring significant improvement. For instance, combin-
ing embedded transcripts with VGG-19 embeddings yields a
precision at 10 of 80.00 %, compared to 58.67 % and 68.67 %



respectively. All the other tested combinations also yielded
better results and high quality multimodal embeddings.

3.4 BiDNN Single Modality Embedding
Although bidirectional deep neural networks are trained in

a multimodal setup, it is possible to embed only one modal-
ity (by presenting in to the respective input and propagat-
ing the activations forwards until the central representation
layer). Doing so might offer an insight about the new repre-
sentation space, common for both modalities, and its perfor-
mance compared to the original representation spaces. Re-
sults clearly show that each newly formed common represen-
tation space is significantly better than its respective orig-
inal representation space. Automatic transcripts improve
from 58.67 % to 66.78 %, visual concepts from 50.00 % to
54.92 % and VGG-19 embeddings from 68.67 % to 70.81 %.
These results are obviously not as good as multimodal em-
beddings obtained by combining two modalities but they
clearly show the improvement that bidirectional deep neu-
ral networks bring even when used in a single-modal fashion
and not only as a common space where representations from
originally different representation spaces are projected.

3.5 BiDNN Crossmodal Query Expansion
Bidirectional deep neural networks naturally enable cross-

modal expansion where a missing modality is filled in by
translating from the other one. If a transcript is not avail-
able for a video segment, it is generated from the visual
concepts and conversely. Using crossmodal query expan-
sion so that all segments have all modalities, we obtain,
e.g., 62.35 % when combining transcripts and visual concepts
(originally 58.00 %) and no significant improvement for pairs
computed with high-performing deep convolutional neural
networks and automatic transcripts. This is due to the rel-
atively small number of samples with one missing modality,
so filling the missing modalities does not have a big impact.
Also, the original representation spaces are used and perform
less good, as shown in Sections 3.3.3 and 3.4, than the new
common representation spaces obtained with bidirectional
deep neural networks.

4. CONCLUSIONS
In the first part of this work we analyzed different meth-

ods for obtaining continuous representations for the task of
video hyperlinking by using automatic transcripts and visual
information. Expectedly, visual embeddings obtained with
deep convolutional neural networks outperformed embedded
visual concepts and proved to be more relevant than auto-
matic transcripts. Very deep VGG convolutional neural net-
work architectures significantly outperformed the less deep
AlexNet architecture. VGG-16 performed best and pro-
duced a single-modal visual embedding that yields 70.68 %
in precision at 10.

The second part of this work was focused on multimodal
embedding. Other than simple methods to utilize multi-
modal information, multimodal autoencoders and novel bidi-
rectional deep neural networks were evaluated. We have
shown that the few downsides of autoencoders can affect
their results and that bidirectional deep neural networks
successfully tackle these problems and clearly outperform
multimodal autoencoders by a significant margin. Although
VGG-16 performed better than VGG-19 in a single modal
setup, the best performance was obtained by multimodal

Table 2: Comparison of the tested methods: preci-
sion at 10 (%) and standard deviation

Modalities Method P@10 (%) σ (%)

Simple multimodal approaches

Transcripts, v.c. concat 58.00 -
Transcripts, AlexNet concat 70.00 -
Transcripts, VGG-16 concat 75.33 -
Transcripts, VGG-19 concat 74.33 -
Transcripts, v.c. lin. comb. 61.32 3.10
Transcripts, AlexNet lin. comb. 67.38 2.66
Transcripts, VGG-16 lin. comb. 71.86 4.11
Transcripts, VGG-19 lin. comb. 71.78 3.90

Multimodal autoencoders

Transcripts, visual concepts 59.60 0.65
Transcripts, AlexNet 69.87 1.64
Transcripts, VGG-16 74.53 1.52
Transcripts, VGG-19 75.73 1.79

BiDNN single modality embedding

Transcripts 66.78 1.05
Visual concepts 54.92 0.99
AlexNet 66.33 0.58
VGG-16 68.70 1.98
VGG-19 70.81 1.08

BiDNN multimodal embedding

Transcripts, visual concepts 73.74 0.46
Transcripts, AlexNet 73.41 1.08
Transcripts, VGG-16 76.33 1.60
Transcripts, VGG-19 80.00 0.80

BiDNN query expansion

Transcripts, visual concepts 62.35 0.25
Transcripts, AlexNet 70.11 1.25
Transcripts, VGG-16 75.33 0.10
Transcripts, VGG-19 74.33 0.10

fusion of embedded automatic transcripts and embedded
VGG-19 features, yielding a precision at 10 of 80.00 %.

Bidirectional (symmetrical) deep neural networks have al-
ready been shown to successfully tackle the downsides of
multimodal autoencoders and to provide superior multimo-
dal embeddings. In this work, we extensively tested bidi-
rectional deep neural networks under different setups and
with different single-modal representations in the context of
video hyperlinking, which further reinforces the points al-
ready made in [21].

Following the results indicating superior new joint rep-
resentation spaces, we evaluate the representation spaces
formed with bidirectional deep neural networks which clearly
outperform the original representation spaces even when
evaluated solely for each modality separately. Every evalu-
ated single modality (embedded automatic transcripts, em-
bedded visual concepts and embeddings obtained convolu-
tional neural networks) improved when projected to the new
representation space obtained with bidirectional deep neural
networks, which proves the effectiveness of the symmetri-
cal crossmodal mappings learned by bidirectional deep neu-
ral networks and especially of the common representation
space formed by the two crossmodal projections with en-
forced symmetry.
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[1] M. Campr and K. Ježek. Comparing semantic models

for evaluating automatic document summarization. In
Text, Speech, and Dialogue, 2015.

[2] M. Cha, Y. Gwon, and H. T. Kung. Multimodal
sparse representation learning and applications.
CoRR, abs/1511.06238, 2015.

[3] F. Feng, X. Wang, and R. Li. Cross-modal retrieval
with correspondence autoencoder. In ACM Intl. Conf.
on Multimedia, pages 7–16, 2014.

[4] X. Glorot and Y. Bengio. Understanding the difficulty
of training deep feedforward neural networks. In
Aistats, volume 9, pages 249–256, 2010.

[5] C. Guinaudeau, A. R. Simon, G. Gravier, and
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