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Introduction

@ given an image, predict its future appearance
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Previous Works / Approaches

@ predicting future motion

'S L Pintea, J C van Gemert, and A W M Smeulders. “Déjavu”. In:
ECCV. Springer. 2014, pp. 172-187.

2J Walker et al. “An uncertain future: Forecasting from static images using
variational autoencoders”. In: ECCV. Springer. 2016, pp. 835-851.
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Previous Works / Approaches

@ predicting future motion
e predicting optical flow'

e predicting trajectories®

B
1

@ predicting future appearance

'S L Pintea, J C van Gemert, and A W M Smeulders. “Déjavu”. In:
ECCV. Springer. 2014, pp. 172-187.

2J Walker et al. “An uncertain future: Forecasting from static images using
variational autoencoders”. In: ECCV. Springer. 2016, pp. 835-851.
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@ predicting an image
@ multiple approaches:

@ generative methods?
@ autoencoder methods

@ image in - image out
@ our approach

@A van den Oord, N Kalchbrenner, and K Kavukcuoglu. “Pixel Recurrent
Neural Networks”. In: CoRR (2016), A van den Oord et al. “Conditional
image generation with pixelcnn decoders”. In: CoRR (2016).
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Predicting Future Appearance

@ predicting an image
@ multiple approaches:

@ generative methods?
@ autoencoder methods

@ image in - image out
@ our approach

@A van den Oord, N Kalchbrenner, and K Kavukcuoglu. “Pixel Recurrent
Neural Networks”. In: CoRR (2016), A van den Oord et al. “Conditional
image generation with pixelcnn decoders”. In: CoRR (2016).
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Autoencoder Methods

@ predictions are typically obtained for a predefined temporal
displacement

@ predictions at other (quantized!) intervals are obtained
iteratively
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Goal

@ given an image and a temporal displacement At, predict
the future image

input output

(4} -8

@ inputs:
e image Iy at current time f
e temporal displacement At
@ output:
e anticipated image I+ at time f + Af

@ minimizing MSE (4 at, I;O+At)
@ one-step predictions at arbitrary temporal displacements

v
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Architecture

@ encoder network

e image encoding branch
e time encoding branch (continuous input!)

@ decoder network
o similar architecture used to generate object rotations®

3M Tatarchenko, A Dosovitskiy, and T Brox. “Multi-view 3D Models from
Single Images with a Convolutional Network”. In: ECCV. Springer. 2016,
pp. 322—-337.
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Baseline

DEcoping PART

@ analogous encoder-decoder architecture
@ no time modelling branch
e one-step prediction for a fixed temporal displacement At
o further predictions computed iteratively for kAt
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Dataset

@ KTH human action recognition dataset
e 6 actions (walking, jogging, running, hand-waving,
hand-clapping, boxing)
e 25 actors; 4 recordings for each actor and action
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Dataset

@ KTH human action recognition dataset
e 6 actions (walking, jogging, running, hand-waving,
hand-clapping, boxing)
e 25 actors; 4 recordings for each actor and action

@ randomly split by actors

@ 80% - training set
@ 20% - testing set
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Example Anticipations

t=40ms t=80ms t=120ms t=160ms t=200ms
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Example Anticipations

input t=40ms t=80ms  t=120ms t=160ms t=200ms
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Example Anticipations
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The Architecture is:
@ able to recognize location and pose
@ able to anticipate spatial displacement and appearance
@ able to understand orientation (e.g. walking left to right vs

right to left)
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Example Anticipations Il

t=40ms t=80ms t=120ms  t=160ms
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groundtruth  baseline
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Example Anticipations Il
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Long-Distance Anticipations
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Anticipating Unseen Temporal Displacements

@ intervals during training dependent on the video framerate
@ predicting unseen temporal displacements:

predicted
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Quality Estimations - MSE

Mean Squared Error
Action Baseline Our Method
Jogging 30.64 11.66
Running 40.88 17.35
Walking 30.87 19.26
Hand-clapping ~ 43.23 33.93
Hand-waving 43.71 35.19
Boxing 46.22 37.71

Mean MSE 39.26 25.85
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Downsides

@ artifacting and loss of details due to pose ambiguity:

input t=40ms t=80ms t=120ms  t=160ms  t=200ms
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Downsides |l

@ loss of details due to large frame differences during
training (jogging):

input t=40ms t=80ms t=120ms t=160ms t=200ms

@ extreme loss of details due to even larger frame differences
during tralnlng running):
input t=40ms t=80ms t= 120ms t 160ms t=s

predicted

predicted
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Downsides Il

@ loss of details due to low fg/bg contrast:

inpt t=40ms t=80ms t=120ms t=160ms  t=200ms

@ loss of details and artifacting due to small and sporadic
movement:

predicted

input t=40ms t=80ms  t=120ms ”t=160ms t=200ms

predicted




Conclusion

Conclusion

@ anticipates future at arbitrary time displacementsv’
@ does so in one step, with no iterations v/

@ outperforms iterative predicting in terms of MSE and visual
analysisv’

@ ambiguities represent cannot be tackled by this
architecture alone X

@ bigger displacements and decreased contrast lead to
artifacting and loss of details x



Thank you! Questions?
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